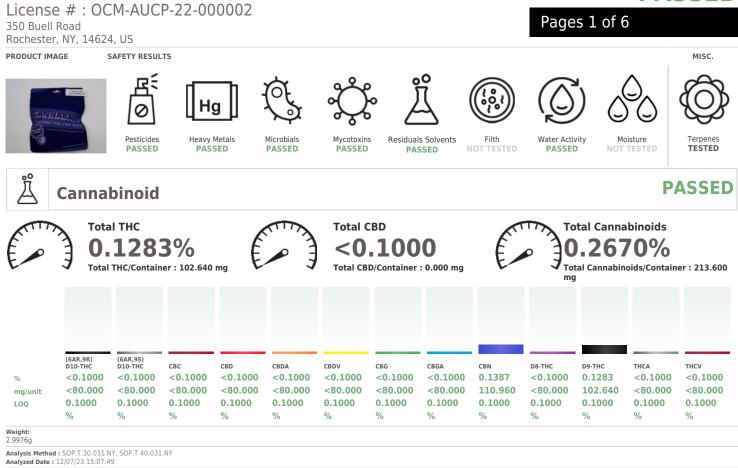


Cirona Labs

Certificate of Analysis FOR COMPLIANCE


Kaycha Labs

E-CL-CB-02-1123-S1 Matrix: Edible Type: Gummy

Sample:AL31206005-002 Harvest/Lot ID: E-CL-CB-02-1123 Batch#: E-CL-CB-02-1123 Seed to Sale# NA Sample Size Received: 13 units Total Amount: 2400 units Retail Product Size: 80 gram Sampled: 12/06/23 04:05 PM Sampling Start: 04:05 PM Sampling End: 04:50 PM Sampling Method: SOP.T.20.010.NY

PASSED

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Certificate of Analysis

Cirona Labs

350 Buell Road Rochester, NY, 14624, US Telephone: (305) 498-3066 Email: hunter@cironalabs.com License # : OCM-AUCP-22-000002 Sample : AL31206005-002 Harvest/Lot ID: E-CL-CB-02-1123 Batch# : E-CL-CB-02-1123 Sampled : 12/06/23

Sample Size Received : 13 units Total Amount : 2400 units Sampling Method : SOP.T.20.010.NY

Page 2 of 6

Terpenes

ALPHA-PINENE ALPHA-TERPINENE BETA-NYACKIE BETA-PINENE CIS-NEROLIDOL GAMMA-TERPINENE TRANS-NEROLIDOL Weight 0.985g Analysis Method : SOP.T.30.064.NY, SC Analyzed Date : 12/07/23 17:09:55	(%) 0.10 0.10 0.10 0.10 0.04 0.04 0.10	<80.0 <80.0 <80.0 <80.0 <32.0 <32.0 <80.0	<0.10 <0.10 <0.10 <0.01 <0.04 <0.04 <0.10	
BETA-MYRCENE BTA-MYRCENE CIS-NEROLIOL GAMMA-TERPINENE TRANS-NEROLIOU Weight: 0.985g Analysis Method : SOP. T.30.064.NY, SC	0.10 0.10 0.04 0.04 0.10	<80.0 <80.0 <32.0 <32.0	<0.10 <0.10 <0.04 <0.04	
BETA-PINENE CIS-NEROLIDOL GAMMA-TERPINENE TRANS-NEROLIDOL Weight 0.985g Analysis Method : SOP.T.30.064.NY, SC	0.10 0.04 0.04 0.10	<80.0 <32.0 <32.0	<0.10 <0.04 <0.04	
CIS-NEROLIDOL GAMMA-TERPINENE TRANS-NEROLIDOL Weight: 0.985g Analysis Method : SOP. T.30.064.NY, SC	0.04 0.04 0.10	<32.0 <32.0	<0.04 <0.04	
GAMMA-TERPINENE TRANS-NEROLIDOL Weight: 0.985g Analysis Method : SOP.T.30.064.NY, SC	0.04 0.10	<32.0	< 0.04	
TRANS-NEROLIDOL Weight: 0.985g Analysis Method : SOP.T.30.064.NY, SO	0.10			
Weight: 0.985g Analysis Method : SOP.T.30.064.NY, S(<80.0	<0.10	
0.985g Analysis Method : SOP.T.30.064.NY, SO	OP.T.40.064.NY			
0.985g Analysis Method : SOP.T.30.064.NY, SO	DP.T.40.064.NY			
	DP.T.40.064.NY			
Analyzed Date : 12/07/23 17:09:55				

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

12/12/23

Signature

PASSED

TESTED

Kaycha Labs **■愛な2回** E-CL-CB-02-1123-S1 N/A

Matrix : Edible Type: Gummy

Certificate of Analysis

Cirona Labs

350 Buell Road Rochester, NY, 14624, US Telephone: (305) 498-3066 Email: hunter@cironalabs.com License # : OCM-AUCP-22-000002 Sample : AL31206005-002 Harvest/Lot ID: E-CL-CB-02-1123 Batch# : E-CL-CB-02-1123 Sampled : 12/06/23

Sample Size Received : 13 units Total Amount : 2400 units Sampling Method : SOP.T.20.010.NY

PASSED

PASSED

Page 3 of 6

R 0

Pesticides

Pesticide	LOQ	Units	Action	Pass/Fail	Result
resticide	200	omes	Level	1 455/1 411	nesure
PYRETHRINS, TOTAL	0.1	ppm	1	PASS	<0.1
AZADIRACHTIN	0.1	ppm	1	PASS	<0.1
INDOLE-3-BUTYRIC ACID	0.1	ppm	1	PASS	<0.1
MYCLOBUTANIL	0.1	ppm	0.2	PASS	<0.1
PIPERONYL BUTOXIDE	0.1	ppm	2	PASS	<0.1
ABAMECTIN B1A	0.1	ppm	0.5	PASS	<0.1
ACEPHATE	0.1	ppm	0.4	PASS	<0.1
ACEQUINOCYL	0.1	ppm	2	PASS	<0.1
ACETAMIPRID	0.1	ppm	0.2	PASS	<0.1
ALDICARB	0.1	ppm	0.4	PASS	<0.1
AZOXYSTROBIN	0.1	ppm	0.2	PASS	<0.1
CHLORMEQUAT CHLORIDE	0.1	ppm	1	PASS	<0.1
BIFENAZATE	0.1	ppm	0.2	PASS	<0.1
BIFENTHRIN	0.1	ppm	0.2	PASS	<0.1
CARBARYL	0.1	ppm	0.2	PASS	<0.1
COUMAPHOS	0.1	ppm	1	PASS	<0.1
CHLORPYRIFOS	0.1	ppm	0.2	PASS	<0.1
DAMINOZIDE	0.1	ppm	1	PASS	<0.1
BOSCALID	0.1	ppm	0.4	PASS	<0.1
CARBOFURAN	0.1	ppm	0.2	PASS	<0.1
CHLORANTRANILIPROLE	0.1	ppm	0.2	PASS	<0.1
CLOFENTEZINE	0.1	ppm	0.2	PASS	<0.1
DIAZINON	0.1	ppm	0.2	PASS	<0.1
DICHLORVOS	0.1	ppm	1	PASS	<0.1
DIMETHOATE	0.1	ppm	0.2	PASS	<0.1
DIMETHOMORPH	0.1	ppm	1	PASS	<0.1
ETHOPROPHOS	0.1	ppm	0.2	PASS	<0.1
ETOFENPROX	0.1	ppm	0.4	PASS	<0.1
ETOXAZOLE	0.1	ppm	0.2	PASS	<0.1
FENHEXAMID	0.1	ppm	1	PASS	<0.1
FENOXYCARB	0.1	ppm	0.2	PASS	<0.1
FENPYROXIMATE	0.1	ppm	0.4	PASS	<0.1
FIPRONIL	0.1	ppm	0.4	PASS	<0.1
FLONICAMID	0.1	ppm	1	PASS	<0.1
FLUDIOXONIL	0.1	ppm	0.4	PASS	<0.1
HEXYTHIAZOX	0.1	ppm	1	PASS	<0.1
IMAZALIL	0.1	ppm	0.2	PASS	<0.1
IMIDACLOPRID	0.1	ppm	0.4	PASS	<0.1
KRESOXIM METHYL	0.1	ppm	0.4	PASS	<0.1
MALATHION	0.1	ppm	0.2	PASS	<0.1
METALAXYL	0.1	ppm	0.2	PASS	<0.1
METHIOCARB	0.1	ppm	0.2	PASS	<0.1
METHOMYL	0.1	ppm	0.4	PASS	<0.1
MEVINPHOS	0.1	ppm	1	PASS	<0.1
NALED	0.1	ppm	0.5	PASS	<0.1
OXAMYL	0.1	ppm	1	PASS	<0.1

Pesticide	LOQ	Units	Action Level	Pass/Fail	Result
PACLOBUTRAZOL	0.1	ppm	0.4	PASS	<0.1
PERMETHRIN	0.1	ppm	0.2	PASS	<0.1
PHOSMET	0.1	ppm	0.2	PASS	<0.1
PRALLETHRIN	0.1	ppm	0.2	PASS	<0.1
PROPICONAZOLE	0.1	ppm	0.4	PASS	<0.1
PROPOXUR	0.1	ppm	0.2	PASS	<0.1
PYRIDABEN	0.1	ppm	0.2	PASS	<0.1
SPINETORAM, TOTAL	0.1	ppm	1	PASS	<0.1
SPINOSAD, TOTAL	0.1	ppm	0.2	PASS	<0.1
SPIROMESIFEN	0.1	ppm	0.2	PASS	<0.1
SPIROTETRAMAT	0.1	ppm	0.2	PASS	<0.1
SPIROXAMINE	0.1	ppm	0.2	PASS	<0.1
TEBUCONAZOLE	0.1	ppm	0.4	PASS	<0.1
THIACLOPRID	0.1	ppm	0.2	PASS	<0.1
THIAMETHOXAM	0.1	ppm	0.2	PASS	<0.1
TRIFLOXYSTROBIN	0.1	ppm	0.2	PASS	<0.1
CAPTAN *	0.1	ppm	1	PASS	<0.1
CHLORDANE *	0.1	ppm	1	PASS	<0.1
CHLORFENAPYR *	0.1	ppm	1	PASS	<0.1
CYFLUTHRIN *	0.1	ppm	1	PASS	<0.1
CYPERMETHRIN *	0.1	ppm	1	PASS	<0.1
METHYL PARATHION *	0.1	ppm	0.2	PASS	<0.1
MGK-264 *	0.1	ppm	0.2	PASS	<0.1
PENTACHLORONITROBENZENE *	0.1	ppm	1	PASS	<0.1
Weight:					

Weight: 0.5048g

Analysis Method : SOP.T.40.104.NY, SOP.T30.104.NY and SOP.T.40.154.NY Analyzed Date : 12/07/23 16:41:12

Weight: 0.5048g

Analysis Method :SOP.T.40.154.NY Analyzed Date :12/07/23 16:41:45

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Signature 12/12/23

Certificate of Analysis

Cirona Labs

350 Buell Road Rochester, NY, 14624, US **Telephone:** (305) 498-3066 **Email:** hunter@cironalabs.com License # : OCM-AUCP-22-000002
 Sample : AL31206005-002

 Harvest/Lot ID: E-CL-CB-02-1123

 Batch# : E-CL-CB-02-1123

 Sampled : 12/06/23

Sample Size Received : 13 units Total Amount : 2400 units Sampling Method : SOP.T.20.010.NY

PASSED

PASSED

Page 4 of 6

Residual Solvents

Solvents	LOQ	Units	Action Level	Pass/Fail	Result
DIMETHYL SULFOXIDE	750.0	ppm	5000	PASS	<750.0
,1,1-TRICHLOROETHANE	225.0	ppm	1500	PASS	<225.0
IEXANE, TOTAL	625.0	ppm	290	PASS	<625.0
ENTANES, TOTAL	375.0	ppm	5000	PASS	<375.0
UTANES, TOTAL	1800.0	ppm	5000	PASS	<1800.0
YLENES, TOTAL	250.0	ppm	2170	PASS	<250.0
,2-DICHLOROETHANE	0.5	ppm	5	PASS	<0.5
ROPANE	900.0	ppm	5000	PASS	<900.0
IETHANOL	125.0	ppm	3000	PASS	<125.0
THANOL	125.0	ppm	5000	PASS	<125.0
THYL ETHER	125.0	ppm	5000	PASS	<125.0
CETONE	125.0	ppm	5000	PASS	<125.0
-PROPANOL	125.0	ppm	5000	PASS	<125.0
CETONITRILE	125.0	ppm	410	PASS	<125.0
ICHLOROMETHANE	125.0	ppm	600	PASS	<125.0
THYL ACETATE	125.0	ppm	5000	PASS	<125.0
ENZENE	0.5	ppm	2	PASS	<0.5
HEPTANE	125.0	ppm	5000	PASS	<125.0
OLUENE	125.0	ppm	890	PASS	<125.0
HLOROFORM	0.5	ppm	60	PASS	<0.5
Veight:).02847g					

Analysis Method : SOP.1.40.044.NY Analyzed Date : 12/07/23 11:40:24

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Ent

Signature 12/12/23

Certificate of Analysis

Cirona Labs

350 Buell Road Rochester, NY, 14624, US Telephone: (305) 498-3066 Email: hunter@cironalabs.com License # : OCM-AUCP-22-000002 Sample : AL31206005-002 Harvest/Lot ID: E-CL-CB-02-1123 Batch# : E-CL-CB-02-1123 Sampled : 12/06/23

Sample Size Received : 13 units Total Amount : 2400 units Sampling Method : SOP.T.20.010.NY

Page 5 of 6

Kaycha Lab	S
------------	---

E-CL-CB-02-1123-S1 N/A Matrix : Edible Type: Gummy

Microbial PASSED **Mycotoxins** PASSED LOO Units LOO Analyte Result Pass / Action Units Result Pass / Analyte Fail Fail Level TOTAL AEROBIC BACTERIA 100 CFU/g <100 PASS AFLATOXIN G2 0.003 <0.003 PASS 10000 ppm TOTAL YEAST AND MOLD 100 CFU/g <100 PASS 1000 AFLATOXIN G1 0.003 <0.003 PASS ppm ESCHERICHIA COLI SHIGELLA PASS AFLATOXIN B2 <0.003 **PASS** Not Present 0.003 ppm SPP AFLATOXIN B1 <0.003 PASS 0.003 mag SALMONELLA SPECIES Not Present PASS **OCHRATOXIN A+** <0.010 PASS 0.010 ppm ASPERGILLUS TERREUS Not Present PASS <0.003 PASS TOTAL AFLATOXINS (B1, B2, G1, G2) 0.003 mag ASPERGILLUS NIGER PASS Not Present Weight: 0.5048g PASS ASPERGILLUS FLAVUS Not Present ASPERGILLUS FUMIGATUS Not Present PASS Analysis Method : SOP.T.30.104.NY, SOP.T.40.104.NY Weight: Analyzed Date: 12/07/23 16:41:35 1.002g Analysis Method : SOP.T.40.058A.NY, SOP.T.40.058B.NY, SOP.T.40.208.NY Analyzed Date : 12/07/23 11:03:12 **Heavy Metals** PASSED Hg

Metal	LOQ	Units	Result	Pass / Fail	Actior Level
ANTIMONY	0.1000	ug/g	<0.1000	PASS	120
ARSENIC	0.1000	ug/g	<0.1000	PASS	1.5
CADMIUM	0.1000	ug/g	<0.1000	PASS	0.5
CHROMIUM	1.0000	ug/g	<1.0000	PASS	1100
COPPER	1.0000	ug/g	<1.0000	PASS	300
LEAD	0.1000	ug/g	<0.1000	PASS	0.5
MERCURY	0.0100	ug/g	<0.0100	PASS	3
NICKEL	0.1000	ug/g	0.1176	PASS	20

0.4676g

Analysis Method : SOP.T.30.084.NY, SOP.T.40.084.NY Analyzed Date : 12/07/23 16:16:24

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Signature 12/12/23

PASSED

Action

Level

0.02

0.02

0.02

0.02

0.02

0.02

Certificate of Analysis

Cirona Labs

1

Weia 0.854 Analy Analy

350 Buell Road Rochester, NY, 14624, US Telephone: (305) 498-3066 Email: hunter@cironalabs.com License # : OCM-AUCP-22-000002 Sample : AL31206005-002 Harvest/Lot ID: E-CL-CB-02-1123 Batch# : E-CL-CB-02-1123 Sampled : 12/06/23

Sample Size Received : 13 units Total Amount : 2400 units Sampling Method : SOP.T.20.010.NY

Homogeneity

Amount of tests conducted : 1

		N/A	ΣŦ.	.32
Matrix	:	Edible		Ŵ

Kaycha Labs

PASSED

PASSED

Page 6 of 6

()	Water Activ	Water Activity				
Analyte Water Activity	LOQ	Units	Result	P/F	Action Leve	
Water Activity	0.10	aw	0.62	PASS	0.85	

alyte ater Activity	LOQ 0.10	Units aw	Result 0.62	P/F PASS	Action Level 0.85	Analyte	LOQ	Units	Pass/Fail	Result	Action Level
ight: 548g											
alysis Method : SOP.T.40.019						HOM1 TOTAL THC PERCENT DIFFERENCE	0.01	%	PASS	3.17	25
alyzed Date : 12/07/23 13:55:40						HOM1 TOTAL CBD PERCENT DIFFERENCE	0.01	%	PASS	ND	25
						HOM2 TOTAL THC PERCENT DIFFERENCE	0.01	%	PASS	3.17	25
						HOM2 TOTAL CBD PERCENT DIFFERENCE	0.01	%	PASS	ND	25
						HOM3 TOTAL THC PERCENT DIFFERENCE	0.01	%	PASS	4.76	25
						HOM3 TOTAL CBD PERCENT DIFFERENCE	0.01	%	PASS	ND	25
						HOM4 TOTAL THC PERCENT DIFFERENCE	0.01	%	PASS	3.17	25
						HOM4 TOTAL CBD PERCENT DIFFERENCE	0.01	%	PASS	ND	25
						HOM5 TOTAL THC PERCENT DIFFERENCE	0.01	%	PASS	4.76	25
						HOM5 TOTAL CBD PERCENT DIFFERENCE	0.01	%	PASS	ND	25

Analysis Method : SOP.T.30.031.NY, SOP.T.40.031.NY Analyzed Date : 12/07/23 15:07:49

Homogeneity testing is performed utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Signature 12/12/23