

Certificate of Analysis

FOR COMPLIANCE

Kaycha Labs

HHL-E-CL-CW-02-0823-S1-S13 Matrix: Edible

Type: Gummy

Sample:AL30829006-004 Harvest/Lot ID: HHL-E-CL-CW-02-0823

Batch#: HHL-E-CL-CW-02-0823

Sample Size Received: 13 units Total Amount: 2400 units Retail Product Size: 40 gram Sampled: 08/29/23 10:30 AM

> Sampling Start: 10:30 AM Sampling End: 10:30 AM

> > **PASSED**

Pages 1 of 5

Cirona Labs

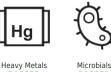
License #: OCM-AUCP-22-000002

350 Buell Road

Rochester, NY, 14624, US

PRODUCT IMAGE

SAFETY RESULTS



PASSED

PASSED

PASSED

PASSED

NOT TESTED

PASSED

Terpenes NOT TESTED

PASSED

MISC.

Cannabinoid

Total THC

PASSED

Total CBD 0.0012%

Total Cannabinoids

							····g							
		-				_								
	(6AR,9R) D10-THC	(6AR,9S) D10-THC	СВС	CBD	CBDA	CBDV	CBG	CBGA	CBN	D8-THC	D9-THC	THCA	THCV	
%	<loq< th=""><th><loq< th=""><th>0.0030</th><th>0.0012</th><th><loq< th=""><th><loq< th=""><th>0.0085</th><th><loq< th=""><th>0.0033</th><th><loq< th=""><th>0.2688</th><th><loq< th=""><th>0.0074</th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.0030</th><th>0.0012</th><th><loq< th=""><th><loq< th=""><th>0.0085</th><th><loq< th=""><th>0.0033</th><th><loq< th=""><th>0.2688</th><th><loq< th=""><th>0.0074</th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.0030	0.0012	<loq< th=""><th><loq< th=""><th>0.0085</th><th><loq< th=""><th>0.0033</th><th><loq< th=""><th>0.2688</th><th><loq< th=""><th>0.0074</th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.0085</th><th><loq< th=""><th>0.0033</th><th><loq< th=""><th>0.2688</th><th><loq< th=""><th>0.0074</th></loq<></th></loq<></th></loq<></th></loq<>	0.0085	<loq< th=""><th>0.0033</th><th><loq< th=""><th>0.2688</th><th><loq< th=""><th>0.0074</th></loq<></th></loq<></th></loq<>	0.0033	<loq< th=""><th>0.2688</th><th><loq< th=""><th>0.0074</th></loq<></th></loq<>	0.2688	<loq< th=""><th>0.0074</th></loq<>	0.0074	
mg/unit	<loq< th=""><th><loq< th=""><th>1.200</th><th>0.480</th><th><loq< th=""><th><loq< th=""><th>3.400</th><th><loq< th=""><th>1.320</th><th><loq< th=""><th>107.520</th><th><loq< th=""><th>2.960</th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>1.200</th><th>0.480</th><th><loq< th=""><th><loq< th=""><th>3.400</th><th><loq< th=""><th>1.320</th><th><loq< th=""><th>107.520</th><th><loq< th=""><th>2.960</th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	1.200	0.480	<loq< th=""><th><loq< th=""><th>3.400</th><th><loq< th=""><th>1.320</th><th><loq< th=""><th>107.520</th><th><loq< th=""><th>2.960</th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>3.400</th><th><loq< th=""><th>1.320</th><th><loq< th=""><th>107.520</th><th><loq< th=""><th>2.960</th></loq<></th></loq<></th></loq<></th></loq<>	3.400	<loq< th=""><th>1.320</th><th><loq< th=""><th>107.520</th><th><loq< th=""><th>2.960</th></loq<></th></loq<></th></loq<>	1.320	<loq< th=""><th>107.520</th><th><loq< th=""><th>2.960</th></loq<></th></loq<>	107.520	<loq< th=""><th>2.960</th></loq<>	2.960	
LOQ	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	
	%	%	%	%	%	%	%	%	%	%	%	%	%	

Analysis Method : SOP.T.30.031.NY, SOP.T.40.031.NY Analyzed Date : 08/30/23 16:17:50

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Kaycha Labs

HHL-E-CL-CW-02-0823-S1-S13

N/A Matrix : Edible

Type: Gummy

Certificate of Analysis

PASSED

350 Buell Road Rochester, NY, 14624, US Telephone: (305) 498-3066 Email: hunter@cironalabs.com License # : OCM-AUCP-22-000002 Sample : AL30829006-004 Harvest/Lot ID: HHL-E-CL-CW-02-0823

Batch#: HHL-E-CL-

Sampled: 08/29/23

Sample Size Received: 13 units Total Amount : 2400 units

Page 2 of 5

Pesticides

	_	_	_		_
п.	A	_	_	_	
ш,	Д	9	9	_	
	$\overline{}$	_	_		_

Pesticide	LOQ	Units	Action Level	Pass/Fail	Result
PYRETHRINS, TOTAL	0.1	ppm	1	PASS	<loq< td=""></loq<>
AZADIRACHTIN	0.1	ppm	1	PASS	<loq< td=""></loq<>
INDOLE-3-BUTYRIC ACID	0.1	ppm	1	PASS	<loq< td=""></loq<>
MYCLOBUTANIL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
PIPERONYL BUTOXIDE	0.1	ppm	2	PASS	<loq< td=""></loq<>
ABAMECTIN B1A	0.1	ppm	0.5	PASS	<loq< td=""></loq<>
ACEPHATE	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
ACEQUINOCYL	0.1	ppm	2	PASS	<loq< td=""></loq<>
ACETAMIPRID	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
ALDICARB	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
AZOXYSTROBIN	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
CHLORMEQUAT CHLORIDE	0.1	ppm	1	PASS	<loq< td=""></loq<>
BIFENAZATE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
BIFENTHRIN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CARBARYL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
COUMAPHOS	0.1	ppm	1	PASS	<loq< td=""></loq<>
CHLORPYRIFOS	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DAMINOZIDE	0.1	ppm	1	PASS	<loq< td=""></loq<>
BOSCALID	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
CARBOFURAN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CHLORANTRANILIPROLE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CLOFENTEZINE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DIAZINON	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DICHLORVOS	0.1	ppm	1	PASS	<loq< td=""></loq<>
DIMETHOATE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DIMETHOMORPH	0.1	ppm	1	PASS	<loq< td=""></loq<>
ETHOPROPHOS	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
ETOFENPROX	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
ETOXAZOLE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
FENHEXAMID	0.1	ppm	1	PASS	<loq< td=""></loq<>
FENOXYCARB	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
FENPYROXIMATE	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
FIPRONIL	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
FLONICAMID	0.1	ppm	1	PASS	<loq< td=""></loq<>
FLUDIOXONIL	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
HEXYTHIAZOX	0.1	ppm	1	PASS	<loq< td=""></loq<>
IMAZALIL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
IMIDACLOPRID	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
KRESOXIM METHYL	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
MALATHION	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
METALAXYL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
METHIOCARB	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
METHOMYL	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
MEVINPHOS	0.1	ppm	1	PASS	<loq< td=""></loq<>
NALED	0.1	ppm	0.5	PASS	<loq< td=""></loq<>
OXAMYL	0.1	ppm	1	PASS	<loq< td=""></loq<>

Pesticide	LOQ	Units	Action Level	Pass/Fail	Result
PACLOBUTRAZOL	0.1	ppm	0.4	PASS	<loq< th=""></loq<>
PERMETHRIN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PHOSMET	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PRALLETHRIN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PROPICONAZOLE	0.1	ppm	0.4	PASS	<loq< th=""></loq<>
PROPOXUR	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PYRIDABEN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
SPINETORAM, TOTAL	0.1	ppm	1	PASS	<loq< th=""></loq<>
SPINOSAD, TOTAL	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
SPIROMESIFEN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
SPIROTETRAMAT	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
SPIROXAMINE	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
TEBUCONAZOLE	0.1	ppm	0.4	PASS	<loq< th=""></loq<>
THIACLOPRID	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
THIAMETHOXAM	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
TRIFLOXYSTROBIN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
CAPTAN *	0.1	ppm	1	PASS	<loq< th=""></loq<>
CHLORDANE *	0.1	ppm	1	PASS	<loq< th=""></loq<>
CHLORFENAPYR *	0.1	ppm	1	PASS	<loq< th=""></loq<>
CYFLUTHRIN *	0.1	ppm	1	PASS	<loq< th=""></loq<>
CYPERMETHRIN *	0.1	ppm	1	PASS	<loq< th=""></loq<>
METHYL PARATHION *	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
MGK-264 *	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PENTACHLORONITROBENZENE *	0.1	ppm	1	PASS	<loq< th=""></loq<>

Weight: 0.5093g

Analysis Method : SOP.T.40.104.NY, SOP.T30.104.NY and SOP.T.40.154.NY Analyzed Date : 08/30/23 15:48:06

Analysis Method: SOP.T.40.154.NY Analyzed Date: 08/30/23 15:48:45

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Kaycha Labs

HHL-E-CL-CW-02-0823-S1-S13

N/A Matrix : Edible Type: Gummy

PASSED

Certificate of Analysis

350 Buell Road Rochester, NY, 14624, US Telephone: (305) 498-3066 Email: hunter@cironalabs.com License # : OCM-AUCP-22-000002 Sample : AL30829006-004 Harvest/Lot ID: HHL-E-CL-CW-02-0823

Batch#: HHL-E-CL-

Sampled: 08/29/23

Sample Size Received: 13 units Total Amount : 2400 units

Page 3 of 5

Residual Solvents

PASSED

Solvents	LOQ	Units	Action Level	Pass/Fail	Result
DIMETHYL SULFOXIDE	750.00	ppm	5000	PASS	<loq< td=""></loq<>
1,1,1-TRICHLOROETHANE	225.00	ppm	1500	PASS	<loq< td=""></loq<>
HEXANE, TOTAL	208.40	ppm	290	PASS	<loq< td=""></loq<>
PENTANES, TOTAL	2700.00	ppm	5000	PASS	<loq< td=""></loq<>
BUTANES, TOTAL	1800.00	ppm	5000	PASS	<loq< td=""></loq<>
XYLENES, TOTAL	1171.80	ppm	2170	PASS	<loq< td=""></loq<>
1,2-DICHLOROETHANE	1.00	ppm	5	PASS	<loq< td=""></loq<>
PROPANE	900.00	ppm	5000	PASS	<loq< td=""></loq<>
METHANOL	540.00	ppm	3000	PASS	<loq< td=""></loq<>
ETHANOL	900.00	ppm	5000	PASS	<loq< td=""></loq<>
ETHYL ETHER	900.00	ppm	5000	PASS	<loq< td=""></loq<>
ACETONE	180.00	ppm	5000	PASS	<loq< td=""></loq<>
2-PROPANOL	900.00	ppm	5000	PASS	<loq< td=""></loq<>
ACETONITRILE	73.80	ppm	410	PASS	<loq< td=""></loq<>
DICHLOROMETHANE	108.00	ppm	600	PASS	<loq< td=""></loq<>
ETHYL ACETATE	900.00	ppm	5000	PASS	<loq< td=""></loq<>
BENZENE	0.45	ppm	2	PASS	<loq< td=""></loq<>
N-HEPTANE	900.00	ppm	5000	PASS	<loq< td=""></loq<>
TOLUENE	160.20	ppm	890	PASS	<loq< td=""></loq<>
CHLOROFORM	10.80	ppm	60	PASS	<loq< td=""></loq<>

Weight: 0.02428g

Analysis Method: SOP.T.40.044.NY Analyzed Date: 09/01/23 14:19:54

Erica Troy Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

HHL-E-CL-CW-02-0823-S1-S13

N/A Matrix : Edible Type: Gummy

LOO

Certificate of Analysis

PASSED

350 Buell Road Rochester, NY, 14624, US Telephone: (305) 498-3066 Fmail: hunter@cironalahs.com License # : OCM-AUCP-22-000002 Sample : AL30829006-004 Harvest/Lot ID: HHL-E-CL-CW-02-0823

Batch#: HHL-E-CL-

Sampled: 08/29/23

Sample Size Received: 13 units

Total Amount: 2400 units

Page 4 of 5

Units

ppm

ppm

ppm

mag

ppm

mag

Microbial PASSED

Analyte

Mycotoxins

PASSED

Action

Level

0.02

0.02

0.02

0.02

0.02

0.02

Result Pass /

<LOQ PASS

<LOQ PASS

<LOO PASS

<LOQ PASS

<LOQ PASS

<L00

Fail

PASS

Analyte	LOQ	Units	Result	Pass / Fail	Action Level
TOTAL AEROBIC BACTERIA	100	CFU/g	<loq< th=""><th>PASS</th><th>10000</th></loq<>	PASS	10000
TOTAL YEAST AND MOLD	100	CFU/g	<loq< th=""><th>PASS</th><th>1000</th></loq<>	PASS	1000
ESCHERICHIA COLI SHIGELLA SPP			Not Present	PASS	
SALMONELLA SPECIES			Not Present	PASS	
ASPERGILLUS TERREUS			Not Present	PASS	
ASPERGILLUS NIGER			Not Present	PASS	
ASPERGILLUS FLAVUS			Not Present	PASS	
ASPERGILLUS FUMIGATUS			Not Present	PASS	

AFLATOXIN G2 0.003 AFLATOXIN G1 0.003 AFLATOXIN B2 0.003 AFLATOXIN B1 0.003 OCHRATOXIN A+ 0.010 TOTAL AFLATOXINS (B1, B2, G1, G2) 0.003

Analysis Method: SOP.T.30.104.NY, SOP.T.40.104.NY

Analyzed Date : $08/30/23\ 15:48:29$

Analysis Method: SOP.T.40.058A.NY, SOP.T.40.058B.NY, SOP.T.40.208.NY Analyzed Date: 08/31/23 07:52:13

Heavy Metals

PASSED

Metal	LOQ	Units	Result	Pass / Fail	Action Level
ANTIMONY	0.1000	ug/g	<loq< th=""><th>PASS</th><th>120</th></loq<>	PASS	120
ARSENIC	0.1000	ug/g	<loq< th=""><th>PASS</th><th>1.5</th></loq<>	PASS	1.5
CADMIUM	0.1000	ug/g	<loq< th=""><th>PASS</th><th>0.5</th></loq<>	PASS	0.5
CHROMIUM	1.0000	ug/g	<loq< th=""><th>PASS</th><th>1100</th></loq<>	PASS	1100
COPPER	1.0000	ug/g	<loq< th=""><th>PASS</th><th>300</th></loq<>	PASS	300
LEAD	0.1000	ug/g	<loq< th=""><th>PASS</th><th>0.5</th></loq<>	PASS	0.5
MERCURY	0.0100	ug/g	<loq< th=""><th>PASS</th><th>3</th></loq<>	PASS	3
NICKEL	0.1000	ug/g	<loq< th=""><th>PASS</th><th>20</th></loq<>	PASS	20

Weight: 0.5171g

Analysis Method: SOP.T.30.084.NY, SOP.T.40.084.NY

Analyzed Date: 08/30/23 16:46:51

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

HHL-E-CL-CW-02-0823-S1-S13

N/A Matrix : Edible

Type: Gummy

Certificate of Analysis

PASSED

Cirona Labs

350 Buell Road Rochester, NY, 14624, US Telephone: (305) 498-3066 Email: hunter@cironalabs.com License #: OCM-AUCP-22-000002 Sample : AL30829006-004 Harvest/Lot ID: HHL-E-CL-CW-02-0823

Batch#: HHL-E-CL-CW-02-0823 Sampled: 08/29/23 Sample Size Received: 13 units
Total Amount: 2400 units

Page 5 of 5

Water Activity

PASSED

Homogeneity

PASSED

Analyte Water Activity	LOQ 0.10	Units	Result 0.66	P/F PASS	Action Level 0.85	Analyte	LOQ	Units	Pass/Fail	Result	Action Level
Weight: 5.6347g	0.10	uv	0.00		0.03	TOTAL CBD RSD (HOMOGENEITY) TOTAL THC RSD (HOMOGENEITY)	0.2000	, 0	PASS PASS	<loq 0.7583</loq 	
Analysis Method : SOP.T.40.019 Analyzed Date : 08/30/23 13:59:16						Analysis Method: SOP.T.30.031.NY, S Analyzed Date: 08/30/23 16:17:50	OP.T.40.0	31.NY			

Homogeneity testing is performed utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

