

Certificate of Analysis

FOR COMPLIANCE

Kaycha Labs

HHL-FP-CL-C-01-0823-S1-S5 Matrix: Edible

Type: Other Edible Product

Sample:AL30815003-006 Harvest/Lot ID: HHL-FP-CL-C-01-0823

> Batch#: HHL-FP-CL-C-01-0823 Sample Size Received: 5 units

Total Amount: 74 units Retail Product Size: 500 gram Sampled: 08/15/23 02:15 PM Sampling Start: 02:15 PM

PASSED

Sampling End: 02:15 PM

Pages 1 of 5

Cirona Labs

License #: OCM-AUCP-22-000002

350 Buell Road

Rochester, NY, 14624, US

PRODUCT IMAGE

SAFETY RESULTS

Pesticides PASSED

Heavy Metals PASSED

Microbials PASSED

PASSED

Residuals Solvents PASSED

NOT TESTED

NOT TESTED

MISC.

Terpenes NOT TESTED

PASSED

Cannabinoid

Total THC

Total CBD Total CBD/Container : 0.000 mg

Total Cannabinoids

											J		
	(6AR,9R)	(6AR,9S)											
	D10-THC	D10-THC	CBC	CBD	CBDA	CBDV	CBG	CBGA	CBN	D8-THC	D9-THC	THCA	THCV
%	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th>0.0127</th><th><loq< th=""><th><l0q< th=""></l0q<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th>0.0127</th><th><loq< th=""><th><l0q< th=""></l0q<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th>0.0127</th><th><loq< th=""><th><l0q< th=""></l0q<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th>0.0127</th><th><loq< th=""><th><l0q< th=""></l0q<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th>0.0127</th><th><loq< th=""><th><l0q< th=""></l0q<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th>0.0127</th><th><loq< th=""><th><l0q< th=""></l0q<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th>0.0127</th><th><loq< th=""><th><l0q< th=""></l0q<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><l0q< th=""><th>0.0127</th><th><loq< th=""><th><l0q< th=""></l0q<></th></loq<></th></l0q<></th></loq<></th></loq<>	<loq< th=""><th><l0q< th=""><th>0.0127</th><th><loq< th=""><th><l0q< th=""></l0q<></th></loq<></th></l0q<></th></loq<>	<l0q< th=""><th>0.0127</th><th><loq< th=""><th><l0q< th=""></l0q<></th></loq<></th></l0q<>	0.0127	<loq< th=""><th><l0q< th=""></l0q<></th></loq<>	<l0q< th=""></l0q<>
70	-	-	-	-	-	-	-	-	-	-		-	•
mg/unit	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>63.500</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>63.500</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>63.500</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>63.500</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>63.500</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>63.500</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>63.500</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>63.500</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>63.500</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>63.500</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	63.500	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
LOQ	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007
200													
	%	%	%	%	%	%	%	%	%	%	%	%	%

Analysis Method : SOP.T.30.031.NY, SOP.T.40.031.NY Analyzed Date : 08/17/23 16:37:50

rounding errors.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million,

ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

HHL-FP-CL-C-01-0823-S1-S5

N/A

Matrix : Edible Type: Other Edible Product

PASSED

Certificate of Analysis Sample : AL30815003-006

Harvest/Lot ID: HHL-FP-CL-C-01-0823

Batch#: HHL-FP-CL-C-01-0823 Sample Size Received: 5 units Total Amount : 74 units Sampled: 08/15/23

Sample Method : SOP Client Method

Page 2 of 5

350 Buell Road

Rochester, NY, 14624, US

Telephone: (305) 498-3066

Email: hunter@cironalabs.com License # : OCM-AUCP-22-000002

Pesticides

PASSED

Pesticide	LOQ	Units	Action Level	Pass/Fail	Result
PYRETHRINS, TOTAL	0.1	ppm	1	PASS	<loq< td=""></loq<>
AZADIRACHTIN	0.1	ppm	1	PASS	<loq< td=""></loq<>
INDOLE-3-BUTYRIC ACID	0.1	ppm	1	PASS	<loq< td=""></loq<>
MYCLOBUTANIL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
PIPERONYL BUTOXIDE	0.1	ppm	2	PASS	<loq< td=""></loq<>
ABAMECTIN B1A	0.1	ppm	0.5	PASS	<loq< td=""></loq<>
ACEPHATE	0.1	ppm	0.4	PASS	<l0q< td=""></l0q<>
ACEQUINOCYL	0.1	ppm	2	PASS	<loq< td=""></loq<>
ACETAMIPRID	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
ALDICARB	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
AZOXYSTROBIN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CHLORMEQUAT CHLORIDE	0.1	ppm	1	PASS	<loq< td=""></loq<>
BIFENAZATE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
BIFENTHRIN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CARBARYL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
COUMAPHOS	0.1	ppm	1	PASS	<loq< td=""></loq<>
CHLORPYRIFOS	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DAMINOZIDE	0.1	ppm	1	PASS	<loq< td=""></loq<>
BOSCALID	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
CARBOFURAN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CHLORANTRANILIPROLE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CLOFENTEZINE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DIAZINON	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DICHLORVOS	0.1	ppm	1	PASS	<loq< td=""></loq<>
DIMETHOATE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DIMETHOMORPH	0.1	ppm	1	PASS	<loq< td=""></loq<>
ETHOPROPHOS	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
ETOFENPROX	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
ETOXAZOLE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
FENHEXAMID	0.1	ppm	1	PASS	<l0q< td=""></l0q<>
FENOXYCARB	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
FENPYROXIMATE	0.1	ppm	0.4	PASS	<l0q< td=""></l0q<>
FIPRONIL	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
FLONICAMID	0.1	ppm	1	PASS	<l00< td=""></l00<>
FLUDIOXONIL	0.1	ppm	0.4	PASS	<l0q< td=""></l0q<>
HEXYTHIAZOX	0.1	ppm	1	PASS	<l00< td=""></l00<>
IMAZALIL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
IMIDACLOPRID	0.1	ppm	0.4	PASS	<l00< td=""></l00<>
KRESOXIM METHYL	0.1	ppm	0.4	PASS	<l00< td=""></l00<>
MALATHION	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
METALAXYL	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
METHIOCARB	0.1	ppm	0.2	PASS	<l00< td=""></l00<>
METHOMYL	0.1	ppm	0.4	PASS	<l0q< td=""></l0q<>
MEVINPHOS	0.1	ppm	1	PASS	<loq< td=""></loq<>
NALED	0.1	ppm	0.5	PASS	<l0q< td=""></l0q<>
OXAMYL	0.1	ppm	1	PASS	<l00< td=""></l00<>
	0.1	L b	-		-204

Pesticide	LOQ	Units	Action Level	Pass/Fail	Result
PACLOBUTRAZOL	0.1	ppm	0.4	PASS	<loq< th=""></loq<>
PERMETHRIN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PHOSMET	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PRALLETHRIN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PROPICONAZOLE	0.1	ppm	0.4	PASS	<loq< th=""></loq<>
PROPOXUR	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PYRIDABEN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
SPINETORAM, TOTAL	0.1	ppm	1	PASS	<loq< th=""></loq<>
SPINOSAD, TOTAL	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
SPIROMESIFEN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
SPIROTETRAMAT	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
SPIROXAMINE	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
TEBUCONAZOLE	0.1	ppm	0.4	PASS	<loq< th=""></loq<>
THIACLOPRID	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
THIAMETHOXAM	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
TRIFLOXYSTROBIN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
CAPTAN *	0.1	ppm	1	PASS	<loq< th=""></loq<>
CHLORDANE *	0.1	ppm	1	PASS	<loq< th=""></loq<>
CHLORFENAPYR *	0.1	ppm	1	PASS	<loq< th=""></loq<>
CYFLUTHRIN *	0.1	ppm	1	PASS	<loq< th=""></loq<>
CYPERMETHRIN *	0.1	ppm	1	PASS	<loq< th=""></loq<>
METHYL PARATHION *	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
MGK-264 *	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PENTACHLORONITROBENZENE *	0.1	ppm	1	PASS	<loq< th=""></loq<>

Weight: 0.508g

Analysis Method : SOP.T.40.104.NY, SOP.T30.104.NY and SOP.T.40.154.NY Analyzed Date : 08/18/23 13:08:46

Analysis Method: SOP.T.40.154.NY Analyzed Date: 08/18/23 11:53:47

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Kaycha Labs

HHL-FP-CL-C-01-0823-S1-S5

N/A

Matrix : Edible Type: Other Edible Product

Certificate of Analysis

350 Buell Road Rochester, NY, 14624, US

Telephone: (305) 498-3066 Email: hunter@cironalabs.com License # : OCM-AUCP-22-000002 Sample : AL30815003-006 Harvest/Lot ID: HHL-FP-CL-C-01-0823

Batch#: HHL-FP-CL-C-01-0823 Sample Size Received: 5 units

Total Amount : 74 units Sampled: 08/15/23

Sample Method : SOP Client Method

PASSED

Page 3 of 5

Residual Solvents

PASSED

Solvents	LOQ	Units	Action Level	Pass/Fail	Result
DIMETHYL SULFOXIDE	750.00	ppm	5000	PASS	<loq< td=""></loq<>
1,1,1-TRICHLOROETHANE	225.00	ppm	1500	PASS	<loq< td=""></loq<>
HEXANE, TOTAL	208.40	ppm	290	PASS	<loq< td=""></loq<>
PENTANES, TOTAL	2700.00	ppm	5000	PASS	<loq< td=""></loq<>
BUTANES, TOTAL	1800.00	ppm	5000	PASS	<loq< td=""></loq<>
XYLENES, TOTAL	1171.80	ppm	2170	PASS	<loq< td=""></loq<>
1,2-DICHLOROETHANE	1.00	ppm	5	PASS	<loq< td=""></loq<>
PROPANE	900.00	ppm	5000	PASS	<loq< td=""></loq<>
METHANOL	540.00	ppm	3000	PASS	<loq< td=""></loq<>
ETHANOL	900.00	ppm	5000	PASS	<loq< td=""></loq<>
ETHYL ETHER	900.00	ppm	5000	PASS	<loq< td=""></loq<>
ACETONE	180.00	ppm	5000	PASS	<loq< td=""></loq<>
2-PROPANOL	900.00	ppm	5000	PASS	<loq< td=""></loq<>
ACETONITRILE	73.80	ppm	410	PASS	<loq< td=""></loq<>
DICHLOROMETHANE	108.00	ppm	600	PASS	<loq< td=""></loq<>
ETHYL ACETATE	900.00	ppm	5000	PASS	<loq< td=""></loq<>
BENZENE	0.45	ppm	2	PASS	<loq< td=""></loq<>
N-HEPTANE	900.00	ppm	5000	PASS	<loq< td=""></loq<>
TOLUENE	160.20	ppm	890	PASS	<loq< td=""></loq<>
CHLOROFORM	10.80	ppm	60	PASS	<loq< td=""></loq<>

Weight:

Analysis Method: SOP.T.40.044.NY Analyzed Date: 08/16/23 12:48:54

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

HHL-FP-CL-C-01-0823-S1-S5

N/A

Matrix : Edible Type: Other Edible Product

Certificate of Analysis

PASSED

350 Buell Road Rochester, NY, 14624, US Telephone: (305) 498-3066 Fmail: hunter@cironalahs.com License # : OCM-AUCP-22-000002 Sample : AL30815003-006 Harvest/Lot ID: HHL-FP-CL-C-01-0823

Batch#: HHL-FP-CL-C-01-0823 Sample Size Received: 5 units

Sampled: 08/15/23 Total Amount: 74 units

Sample Method : SOP Client Method

Analyte

AFLATOXIN G2

AFLATOXIN G1

AFLATOXIN B2

AFLATOXIN B1

OCHRATOXIN A+

TOTAL AFLATOXINS (B1, B2, G1, G2)

Analyzed Date : $08/18/23\ 14:36:35$

Analysis Method: SOP.T.30.104.NY, SOP.T.40.104.NY

Page 4 of 5

Units

ppm

ppm

ppm

mag

ppm

mag

LOO

0.003

0.003

0.003

0.003

0.010

0.003

Microbial

Action

10000

1000

Mycotoxins

PASSED

Action

Level

0.02

0.02

0.02

0.02

0.02

0.02

Result Pass /

<LOQ PASS

<LOO PASS

<LOQ PASS

<LOQ PASS

<LOQ PASS

<L00

Fail

PASS

Analyte LOQ Units Result Fail TOTAL AEROBIC BACTERIA 10 CFU/g <loq 10="" <loq="" and="" aspergillus="" cfu="" coli="" escherichia="" flavus="" fumigatus="" g="" mold="" not="" pass="" pass<="" present="" salmonella="" shigella="" species="" spp="" terreus="" th="" total="" yeast=""><th></th><th></th><th></th><th></th><th></th></loq>					
TOTAL YEAST AND MOLD 10 CFU/g <loq aspergillus="" coli="" escherichia="" flavus="" flavus<="" niger="" not="" pass="" present="" salmonella="" shigella="" species="" spp="" terreus="" th=""><th>Analyte</th><th>LOQ</th><th>Units</th><th>Result</th><th></th></loq>	Analyte	LOQ	Units	Result	
ESCHERICHIA COLI SHIGELLA Not Present SPP SALMONELLA SPECIES Not Present PASS ASPERGILLUS TERREUS Not Present PASS ASPERGILLUS NIGER Not Present PASS ASPERGILLUS FLAVUS Not Present PASS PASS ASPERGILLUS FLAVUS	TOTAL AEROBIC BACTERIA	10	CFU/g	<loq< th=""><th>PASS</th></loq<>	PASS
SPP Not Present PASS SALMONELLA SPECIES Not Present PASS ASPERGILLUS TERREUS Not Present PASS ASPERGILLUS NIGER Not Present PASS ASPERGILLUS FLAVUS Not Present PASS	TOTAL YEAST AND MOLD	10	CFU/g	<loq< th=""><th>PASS</th></loq<>	PASS
ASPERGILLUS TERREUS Not Present PASS ASPERGILLUS NIGER Not Present PASS ASPERGILLUS FLAVUS Not Present PASS				Not Present	PASS
ASPERGILLUS NIGER Not Present PASS ASPERGILLUS FLAVUS Not Present PASS	SALMONELLA SPECIES			Not Present	PASS
ASPERGILLUS FLAVUS Not Present PASS	ASPERGILLUS TERREUS			Not Present	PASS
ASI ENGILLOS I EAVOS	ASPERGILLUS NIGER			Not Present	PASS
ASPERGILLUS FUMIGATUS Not Present PASS	ASPERGILLUS FLAVUS			Not Present	PASS
	ASPERGILLUS FUMIGATUS			Not Present	PASS

Weight: 1.0512g

Analysis Method : SOP.T.40.058A.NY, SOP.T.40.058B.NY, SOP.T.40.208.NY **Analyzed Date :** $08/16/23\ 10:56:38$

Heavy Metals

PASSED

Metal	LOQ	Units	Result	Pass / Fail	Action Level
ANTIMONY	0.1000	ug/g	0.3143	PASS	120
ARSENIC	0.1000	ug/g	<loq< th=""><th>PASS</th><th>1.5</th></loq<>	PASS	1.5
CADMIUM	0.1000	ug/g	<loq< th=""><th>PASS</th><th>0.5</th></loq<>	PASS	0.5
CHROMIUM	1.0000	ug/g	<loq< th=""><th>PASS</th><th>1100</th></loq<>	PASS	1100
COPPER	1.0000	ug/g	<loq< th=""><th>PASS</th><th>300</th></loq<>	PASS	300
LEAD	0.1000	ug/g	<loq< th=""><th>PASS</th><th>0.5</th></loq<>	PASS	0.5
MERCURY	0.0100	ug/g	<loq< th=""><th>PASS</th><th>3</th></loq<>	PASS	3
NICKEL	0.1000	ug/g	0.3368	PASS	20

Weight: 0.4453g

Analysis Method: SOP.T.30.084.NY, SOP.T.40.084.NY

Analyzed Date: 08/16/23 16:31:02

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

HHL-FP-CL-C-01-0823-S1-S5

N/A

Matrix : Edible
Type: Other Edible Product

Certificate of Analysis

Cirona Labo

350 Buell Road Rochester, NY, 14624, US Telephone: (305) 498-3066 Email: hunter@cironalabs.com License #: OCM-AUCP-22-000002 Sample : AL30815003-006
Harvest/Lot ID: HHL-FP-CL-C-01-0823
Batch# : HHL-FP-CL-C-01-0823 Sample Size Received : 5 units
Sampled : 08/15/23 Total Amount : 74 units

Total Amount : 74 units
Sample Method : SOP Client Method

PASSED

Page 5 of 5

Homogeneity

PASSED

Amount of tests conducted: 3

Analyte	LOQ	Units	Pass/Fail	Result	Action Level
TOTAL CBD RSD (HOMOGENEITY)	0.1000	%	PASS	<loq< th=""><th>25</th></loq<>	25
TOTAL THC RSD (HOMOGENEITY)	0.1000	%	PASS	3.4483	25

Analysis Method: SOP.T.30.031.NY, SOP.T.40.031.NY

Analyzed Date: 08/17/23 16:37:50

Homogeneity testing is performed utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39.

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

