

HHL-FP-CL-LL-01-0923-Samples Matrix: Edible

Type: Other Edible Product

Certificate of Analysis

FOR COMPLIANCE

Sample:AL30911004-002 Harvest/Lot ID: HHL-FP-CL-LL-01-0923

Batch#: HHL-FP-CL-LL-01-0923 Sample Size Received: 5 units

> Total Amount: 40 units Retail Product Size: 500 gram Sampled: 09/11/23 12:45 PM

Sampling Start: 12:45 PM Sampling End: 12:45 PM

PASSED

Cirona Labs

License #: OCM-AUCP-22-000002

350 Buell Road

Rochester, NY, 14624, US

PRODUCT IMAGE

SAFETY RESULTS

Pesticides PASSED

Heavy Metals

PASSED

Microbials PASSED

PASSED

Residuals Solvents PASSED

NOT TESTED

Pages 1 of 5

NOT TESTED

MISC.

Terpenes NOT TESTED

Cannabinoid

PASSED

Total THC

Total CBD Total CBD/Container : 0.000 mg

Total Cannabinoids

Total Cannabinoids/Container: 116.000

										;	9		
	(6AR,9R)	(6AR,9S)											
	D10-THC	D10-THC	CBC	CBD	CBDA	CBDV	CBG	CBGA	CBN	D8-THC	D9-THC	THCA	THCV
%	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.0007</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.0225</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.0007</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.0225</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.0007</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.0225</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.0007</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.0225</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.0007</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.0225</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.0007</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.0225</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.0007	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.0225</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.0225</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.0225</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	0.0225	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
mg/unit	<loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>3.500</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>112.500</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></l0q<></th></loq<></th></loq<>	<loq< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>3.500</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>112.500</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></l0q<></th></loq<>	<l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>3.500</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>112.500</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></l0q<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>3.500</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>112.500</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>3.500</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>112.500</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>3.500</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>112.500</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	3.500	<loq< th=""><th><loq< th=""><th><loq< th=""><th>112.500</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>112.500</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>112.500</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	112.500	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
LOQ	0.0006	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007
	%	%	%	%	%	%	%	%	%	%	%	%	%

Weight:

Analysis Method : SOP.T.30.031.NY, SOP.T.40.031.NY Analyzed Date : 09/12/23 12:15:13

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Kaycha Labs

HHL-FP-CL-LL-01-0923-Samples

N/A

Matrix : Edible Type: Other Edible Product

Certificate of Analysis

350 Buell Road Rochester, NY, 14624, US Telephone: (305) 498-3066 Email: hunter@cironalabs.com License # : OCM-AUCP-22-000002 Sample : AL30911004-002 Harvest/Lot ID: HHL-FP-CL-LL-01-0923

Batch#: HHL-FP-CL-Sampled: 09/11/23

Sample Size Received: 5 units Total Amount : 40 units

PASSED

Page 2 of 5

Pesticides

-				
///	-	-		
_	_	-	_	
 _			_	

Pesticide	LOQ	Units	Action Level	Pass/Fail	Result
PYRETHRINS, TOTAL	0.1	ppm	1	PASS	<l0q< td=""></l0q<>
AZADIRACHTIN	0.1	ppm	1	PASS	<l0q< th=""></l0q<>
INDOLE-3-BUTYRIC ACID	0.1	ppm	1	PASS	<l0q< td=""></l0q<>
MYCLOBUTANIL	0.1	ppm	0.2	PASS	<l0q< th=""></l0q<>
PIPERONYL BUTOXIDE	0.1	ppm	2	PASS	<l0q< th=""></l0q<>
ABAMECTIN B1A	0.1	ppm	0.5	PASS	<loq< th=""></loq<>
ACEPHATE	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
ACEQUINOCYL	0.1	ppm	2	PASS	<l0q< td=""></l0q<>
ACETAMIPRID	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
ALDICARB	0.1	ppm	0.4	PASS	<l0q< td=""></l0q<>
AZOXYSTROBIN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CHLORMEQUAT CHLORIDE	0.1	ppm	1	PASS	<loq< td=""></loq<>
BIFENAZATE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
BIFENTHRIN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CARBARYL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
COUMAPHOS	0.1	ppm	1	PASS	<loq< td=""></loq<>
CHLORPYRIFOS	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DAMINOZIDE	0.1	ppm	1	PASS	<loq< td=""></loq<>
BOSCALID	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
CARBOFURAN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CHLORANTRANILIPROLE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CLOFENTEZINE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DIAZINON	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DICHLORVOS	0.1	ppm	1	PASS	<l0q< td=""></l0q<>
DIMETHOATE	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
DIMETHOMORPH	0.1	ppm	1	PASS	<l0q< td=""></l0q<>
ETHOPROPHOS	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
ETOFENPROX	0.1	ppm	0.4	PASS	<l0q< td=""></l0q<>
ETOXAZOLE	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
FENHEXAMID	0.1	ppm	1	PASS	<l0q< td=""></l0q<>
FENOXYCARB	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
FENPYROXIMATE	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
FIPRONIL	0.1	ppm	0.4	PASS	<l0q< th=""></l0q<>
FLONICAMID	0.1	ppm	1	PASS	<l0q< th=""></l0q<>
FLUDIOXONIL	0.1	ppm	0.4	PASS	<loq< th=""></loq<>
HEXYTHIAZOX	0.1	ppm	1	PASS	<loq< th=""></loq<>
IMAZALIL	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
IMIDACLOPRID	0.1	ppm	0.4	PASS	<l0q< th=""></l0q<>
KRESOXIM METHYL	0.1	ppm	0.4	PASS	<loq< th=""></loq<>
MALATHION	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
METALAXYL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
METHIOCARB	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
METHOMYL	0.1	ppm	0.4	PASS	<l0q< td=""></l0q<>
MEVINPHOS	0.1	ppm	1	PASS	<l0q< td=""></l0q<>
NALED	0.1	ppm	0.5	PASS	<l0q< th=""></l0q<>
OXAMYL	0.1	ppm	1	PASS	<loq< td=""></loq<>

Pesticide	LOQ	Units	Action Level	Pass/Fail	Result
PACLOBUTRAZOL	0.1	ppm	0.4	PASS	<loq< th=""></loq<>
PERMETHRIN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PHOSMET	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PRALLETHRIN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PROPICONAZOLE	0.1	ppm	0.4	PASS	<loq< th=""></loq<>
PROPOXUR	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PYRIDABEN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
SPINETORAM, TOTAL	0.1	ppm	1	PASS	<loq< th=""></loq<>
SPINOSAD, TOTAL	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
SPIROMESIFEN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
SPIROTETRAMAT	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
SPIROXAMINE	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
TEBUCONAZOLE	0.1	ppm	0.4	PASS	<loq< th=""></loq<>
THIACLOPRID	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
THIAMETHOXAM	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
TRIFLOXYSTROBIN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
CAPTAN *	0.1	ppm	1	PASS	<loq< th=""></loq<>
CHLORDANE *	0.1	ppm	1	PASS	<loq< th=""></loq<>
CHLORFENAPYR *	0.1	ppm	1	PASS	<loq< th=""></loq<>
CYFLUTHRIN *	0.1	ppm	1	PASS	<loq< th=""></loq<>
CYPERMETHRIN *	0.1	ppm	1	PASS	<loq< th=""></loq<>
METHYL PARATHION *	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
MGK-264 *	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PENTACHI ORONITROBENZENE *	0.1	mag	1	PASS	<l00< th=""></l00<>

Weight: 0.5054a

Analysis Method : SOP.T.40.104.NY, SOP.T30.104.NY and SOP.T.40.154.NY Analyzed Date : 09/12/23 13:32:59

Analysis Method: SOP.T.40.154.NY Analyzed Date: 09/12/23 13:07:37

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Kaycha Labs

HHL-FP-CL-LL-01-0923-Samples

N/A

Matrix : Edible
Type: Other Edible Product

PASSED

Certificate of Analysis

. . . .

350 Buell Road Rochester, NY, 14624, US Telephone: (305) 498-3066 Email: hunter@cironalabs.com License #: OCM-AUCP-22-000002 Sample : AL30911004-002 Harvest/Lot ID: HHL-FP-CL-LL-01-0923

Batch#: HHL-FP-CL-LL-01-0923 **Sampled:** 09/11/23 Sample Size Received: 5 units Total Amount: 40 units

Page 3 of 5

Residual Solvents

PASSED

Solvents	LOQ	Units	Action Level	Pass/Fail	Result
DIMETHYL SULFOXIDE	750.00	ppm	5000	PASS	<loq< td=""></loq<>
1,1,1-TRICHLOROETHANE	225.00	ppm	1500	PASS	<loq< td=""></loq<>
HEXANE, TOTAL	208.40	ppm	290	PASS	<loq< td=""></loq<>
PENTANES, TOTAL	2700.00	ppm	5000	PASS	<loq< td=""></loq<>
BUTANES, TOTAL	1800.00	ppm	5000	PASS	<loq< td=""></loq<>
XYLENES, TOTAL	1171.80	ppm	2170	PASS	<loq< td=""></loq<>
1,2-DICHLOROETHANE	1.00	ppm	5	PASS	<loq< td=""></loq<>
PROPANE	900.00	ppm	5000	PASS	<loq< td=""></loq<>
METHANOL	540.00	ppm	3000	PASS	<loq< td=""></loq<>
ETHANOL	900.00	ppm	5000	PASS	<loq< td=""></loq<>
ETHYL ETHER	900.00	ppm	5000	PASS	<loq< td=""></loq<>
ACETONE	180.00	ppm	5000	PASS	<loq< td=""></loq<>
2-PROPANOL	900.00	ppm	5000	PASS	<loq< td=""></loq<>
ACETONITRILE	73.80	ppm	410	PASS	<loq< td=""></loq<>
DICHLOROMETHANE	108.00	ppm	600	PASS	<loq< td=""></loq<>
ETHYL ACETATE	900.00	ppm	5000	PASS	<loq< td=""></loq<>
BENZENE	0.45	ppm	2	PASS	<loq< td=""></loq<>
N-HEPTANE	900.00	ppm	5000	PASS	<loq< td=""></loq<>
TOLUENE	160.20	ppm	890	PASS	<loq< td=""></loq<>
CHLOROFORM	10.80	ppm	60	PASS	<loq< td=""></loq<>

Weight: 0.022330

Analysis Method: SOP.T.40.044.NY Analyzed Date: 09/12/23 11:35:14

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

HHL-FP-CL-LL-01-0923-Samples

N/A

Matrix : Edible Type: Other Edible Product

Certificate of Analysis

PASSED

350 Buell Road Rochester, NY, 14624, US Telephone: (305) 498-3066 Fmail: hunter@cironalahs.com License #: OCM-AUCP-22-000002 Sample : AL30911004-002 Harvest/Lot ID: HHL-FP-CL-LL-01-0923

Batch#: HHL-FP-CL-

Sampled: 09/11/23

Sample Size Received: 5 units Total Amount : 40 units

Page 4 of 5

Units

ppm

ppm

ppm

Microbial PASSED

AFLATOXIN G2

AFLATOXIN G1

AFLATOXIN B2

Analyte

Mycotoxins

PASSED

Action

Level

0.02

0.02

0.02

Result Pass /

<LOQ PASS

<LOQ PASS

<LOQ PASS

Fail

Analyte	LOQ	Units	Result	Pass / Fail	Action Level
TOTAL AEROBIC BACTERIA	100	CFU/g	<loq< th=""><th>PASS</th><th>10000</th></loq<>	PASS	10000
TOTAL YEAST AND MOLD	100	CFU/g	<loq< th=""><th>PASS</th><th>1000</th></loq<>	PASS	1000
ESCHERICHIA COLI SHIGELLA SPP			Not Present	PASS	
SALMONELLA SPECIES			Not Present	PASS	
ASPERGILLUS TERREUS			Not Present	PASS	
ASPERGILLUS NIGER			Not Present	PASS	
ASPERGILLUS FLAVUS			Not Present	PASS	
ASPERGILLUS FUMIGATUS			Not Present	PASS	

Analysis Method: SOP.T.30.104.NY, SOP.T.40.104.NY

AFLATOXIN B1 <LOQ PASS 0.003 mag 0.02 OCHRATOXIN A+ PASS 0.010 <L00 0.02 ppm <LOO PASS TOTAL AFLATOXINS (B1, B2, G1, G2) 0.003 mag 0.02

LOO

0.003

0.003

0.003

Analyzed Date : $09/12/23 \ 13:33:13$

Weight: 1.0627g

rounding errors.

Analysis Method : SOP.T.40.058A.NY, SOP.T.40.058B.NY, SOP.T.40.208.NY **Analyzed Date :** $09/12/23\ 10:40:13$

Heavy Metals

PASSED

Metal	LOQ	Units	Result	Pass / Fail	Action Level
ANTIMONY	0.1000	ug/g	<loq< th=""><th>PASS</th><th>120</th></loq<>	PASS	120
ARSENIC	0.1000	ug/g	<loq< th=""><th>PASS</th><th>1.5</th></loq<>	PASS	1.5
CADMIUM	0.1000	ug/g	<loq< th=""><th>PASS</th><th>0.5</th></loq<>	PASS	0.5
CHROMIUM	1.0000	ug/g	<loq< th=""><th>PASS</th><th>1100</th></loq<>	PASS	1100
COPPER	1.0000	ug/g	<loq< th=""><th>PASS</th><th>300</th></loq<>	PASS	300
LEAD	0.1000	ug/g	<loq< th=""><th>PASS</th><th>0.5</th></loq<>	PASS	0.5
MERCURY	0.0100	ug/g	<loq< th=""><th>PASS</th><th>3</th></loq<>	PASS	3
NICKEL	0.1000	ug/g	<loq< th=""><th>PASS</th><th>20</th></loq<>	PASS	20

Weight: 0.4959g

Analysis Method: SOP.T.30.084.NY, SOP.T.40.084.NY

Analyzed Date: 09/12/23 16:04:08

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

HHL-FP-CL-LL-01-0923-Samples

N/A

Matrix : Edible
Type: Other Edible Product

Certificate of Analysis

Cirona Labo

350 Buell Road Rochester, NY, 14624, US Telephone: (305) 498-3066 Email: hunter@cironalabs.com License #: OCM-AUCP-22-000002 Sample : AL30911004-002 Harvest/Lot ID: HHL-FP-CL-LL-01-0923

Batch#: HHL-FP-CL-LL-01-0923 **Sampled:** 09/11/23 Sample Size Received: 5 units Total Amount: 40 units **PASSED**

Page 5 of 5

Homogeneity

PASSED

Amount of tests conducted: 1

Analyte	LOQ	Units	Pass/Fail	Result	Action Level
TOTAL CBD RSD (HOMOGENEITY)	0.1000	%	PASS	<l0q< th=""><th>25</th></l0q<>	25
TOTAL THC RSD (HOMOGENEITY)	0.1000	%	PASS	5.2065	25

Analysis Method: SOP.T.30.031.NY, SOP.T.40.031.NY

Analyzed Date: 09/12/23 12:15:13

Homogeneity testing is performed utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39.

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

